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Objective: The work will develop an integrated control infrastructure for advanced life 
support.  It will allow for the integration of a variety of control components from 
different sources (e.g., academic, industry, NASA, etc.) and allow them to share data and 
control actions.  It will produce well defined application programmers interfaces (APIs) 
for the different components of the integrated control system and allow any control 
component to receive and send information to other control components.  It will also 
allow components to be reconfigured without interrupting the control process.  Integrated 
control of a complex advanced life support system needs a coherent architecture in which 
all components can live and interact.  This work provides such an infrastructure and gives 
the AEMC program an integrating framework in which control components from all 
funded research can interact.   
 
Technical Approach: This work builds on seven years of research in providing 
integrated control to advanced life support systems at NASA JSC, starting with the Phase 
I test in 1995 (Lai-fook, K. M. and Ambrose, R. O. 1997), through the Phase III crewed test in 
1997 (Schreckenghost et al 1998) and most recently in the 18 month integrated water 
recovery system test that ended several months ago (Bonasso 2001).  At the core of this 
research is the 3T approach to intelligent control (Bonasso et al 1997).  3T separates the 
intelligent control problem into three interacting layers or tiers(see Figure 2 in the 
Detailed Project Plan).  The lowest layer contains the control laws that interface to 
hardware and sensors.  The middle layer contains standard operating procedures that pass 
parameters to the control laws and execute them.  The top layer contains a planning 
system that selects amongst standard operating procedures to accomplish system goals 
given resource constraints.   While our particular realization of this approach, known as 
3T, has been successful for several disparate ALS systems, there are fundamental 
shortcomings in the current 3T implementation that hinder its ability to handle the 
hardware and software variations anticipated in the next-generation ALS systems.  In 
particular, it is difficult to interface 3T to outside control components that may come 
from academia, industry or other government agencies.   We propose to re-implement 3T 



using new distributed processing methods and tools and we propose to create detailed 
interface specifications between the 3T control system and other control components.  
This will provide an integrating framework in which a trusted and proven ALSS control 
system (3T) can be augmented with new research in intelligent monitoring and control 
that will come out of the AEMC NRA and other NASA and non-NASA research.  
 
Our proposed approach is to provide a common set of interfaces (APIs) that allows any 
combination of control modules to be interchangeable. These interfaces must be easily 
specified in a standard manner and must allow a straightforward incorporation of code 
changes on either side of a given interface. We propose using the Common Object 
Request Broker Architecture (CORBA) ((OMG, 2002)) to define and implement these 
interfaces.  CORBA has been used extensively in a number of distributed processing 
applications, providing an open infrastructure for computer applications to work together 
over Ethernet networks.  CORBA is independent of both operating systems and 
programming languages, and tools for developing interoperable CORBA applications are 
available from many different vendors.  Recasting the 3T control paradigm in the 
CORBA framework will allow control components that implement the same interface to 
become interchangeable with a minimum of recoding, recompilation or hardware 
downtime. 
  
We will reimplement all three layers of the 3T architecture using CORBA and define 
explicit interfaces to those three layers.   At the lowest layer (containing the control laws) 
we will implement a CORBA/DCOM bridge to allow access to OPC-based sensors and 
actuators.  We will also define an interface to the control laws to allow outside vendors or 
investigators to provide ready-made controllers for their equipment that will fit into the 
control architecture.  In the middle layer (containing standard operating procedures) we 
will define CORBA interfaces for executing and changing the standard operating 
procedures from external control components or by the crew.  At the top layer 
(containing the algorithms for planning and scheduling of scarce resources) we will 
provide CORBA interfaces that allow for updating the planning and scheduling 
constraints and models from outside components (such as model-based fault diagnosis 
systems).   
 
As part of our technical approach, we propose to evaluate the reconfigurable control 
architecture in two hardware testbeds at NASA JSC: 1) The Water Research Laboratory 
(WRL); and 2) The Environmental System Test Stand (ESTS).  In addition we have a 
number of subsystem and integrated simulations that will be used to perform evaluation 
of the reconfigurable control architecture.  Extensive testing will be performed to ensure 
the goals of the project have been met.     
 
 



 

Figure 1 Crew Collaboration Architecture 

      
The Larger Picture:  Integrated control of advanced life support systems is only a 
small part of the larger picture, which includes crew and ground interaction with the 
integrated control system.  Figure 1 shows a proposed architecture for crew interaction 
with integrated life support that is being developed at NASA JSC under a Code R 
research grant entitled “Distributed Crew Interaction with Advanced Life Support 
Control Systems” (Schreckenghost et al 2002).  This work provides a crew activity 
planner and crew proxies that manage the interactions between crew members and the 
control system. The proxies are configured to display personalized control information to 
crew members at their workstations, PDAs or pagers.  The crew collaboration 
architecture is completely distributed and reconfigurable.  Initial testing of this crew 
collaboration architecture was done during the integrated water recovery system test.  
The work described in this proposal will create a reconfigurable control architecture that 
can seamlessly integrate with the crew collaboration architecture.  The combined system 
will offer complete flexibility to both control advanced life support systems and to allow 
crew interaction with that control system.  Efforts underway using Code R money in 
FY03 will extend the crew collaboration architecture to ground control.  The resulting 
integrated system will allow everything from sensor interpretation and low-level control 
through executing standard operating procedures through resource and crew planning to 
crew and ground interaction and monitoring. 



 
Another key component of both the reconfigurable control architecture and the crew 
collaboration architecture is the concept of adjustable autonomy (Kortenkamp, 
Schreckenghost and Bonasso, 2000; Dorais et al 1998, Barber et al 2001).  Adjustable 
autonomy allows autonomous systems to operate with dynamically varying levels of 
independence, intelligence and control.  The goal is to minimize the necessity for human 
interaction, but maximize the capability to interact.  Our reconfigurable control 
architecture is designed to support multiple levels of autonomous activities ranging from 
direct manual control to completely autonomous control.  The crew collaboration 
architecture is designed to support crew insight and control of the autonomous system, 
including adjusting its level of autonomy. The two together support a seamless control 
infrastructure that implements adjustable autonomy. 
 
Resources: This project will require 27 staff months for the investigators for a total 
loaded labor cost of $360,000. Additionally, we will need $12,300 for hardware and 
software purchases.  This totals $372,300 for the project.  We are projecting an 18-month 
schedule so the cost for FY03 will be $252,300 and the cost for FY04 will be $120,000. 
 
Schedule: An 18-month schedule for accomplishing the our task is given in the detailed 
project plan.  Reimplementing the three layers of 3T can be carried out in parallel since 
they are independent applications.  Testing of the reconfigurable architecture will take 
place after experimentation.  We have also scheduled time to document the new 
architecture and the experience of using CORBA for 3T. 
 
Payoff: At the end of this project we will have a reconfigurable control architecture that 
can: 1) integrate a variety of control components coming from NASA, academia and 
industry; 2) integrate with a crew collaboration architecture and ground control tools; 3) 
allow for data distribution and logging for experimental analysis; and 4) provide a 
distributed control infrastructure for large-scale ALSS tests such as Integrity. 
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The objective of this proposal is to design, develop and demonstrate a reconfigurable architecture 
of control software for advanced life support (ALS) applications. Such an architecture will (1) 
support technology advancement by allowing rapid integration of newly developed control 
research for evaluation or comparison purposes in ALS testbeds, and (2) decrease downtime of 
ALS systems and improve operational efficiency by supporting control reconfiguration with a 
minimum of deactivation or shutdown of the systems being controlled. These capabilities are 
required in order to allow engineers to substitute new sensor, actuator or control algorithms into 
existing ground test environments, and also to allow crew to manage failure or degraded mode 
situations in deployed ALS systems.  Using the approach described in this proposal, we will 
demonstrate this architecture within 18 months for $372,300 on a simulated ALS water recovery 
system (WRS), a physical subsystem of the WRS, and a small ALS light stand laboratory at JSC. 
This effort is considered to be Technology Readiness Level 4, component validation in a 
laboratory environment. 
 

General. 
 
Future intelligent control systems for ALS must not only manage systems as disparate as food 
processing and air revitalization, but must also take into account the fact that these systems will 
be distributed geographically, executing on different software operating systems in different 
languages across a variety of computing hardware.  Given these dimensions of distribution and 
the need to enable replacement or revision of any existing component for repair or testing, these 
systems should also be made easy to reconfigure.  Recent advances in the field of distributed 
computing can support these requirements to an extent never before realized.  Current tools for 
building distributed and cross-platform systems exhibit both excellent support for state-of-the-art 
distributed design methodology and improved standardization for interoperability across diverse 
components.  The ease of implementation and maintenance for ALS intelligent control systems 
can be greatly enhanced by taking advantage of these advanced distributed computing tools now.  
As the first step, we propose to update the implementation for an existing intelligent control 
system architecture using these modern tools and methods. 
 
Over the past seven years we have been providing intelligent control for a number of ALS 
applications.  In these projects we have used a software control organization known as the three-



layer architecture, which has fundamental value for providing autonomous intelligent control to 
any ALS application.  While our particular realization of this approach, known as 3T, has been 
successful for several disparate ALS systems, there are fundamental shortcomings in the current 
3T implementation that hinder its ability to handle the hardware and software variations 
anticipated in the next-generation ALS systems.  We therefore see a near-term need to modernize 
our implementation of the three-layer control architecture using the recently emerged standards 
and tools for interfacing distributed software and hardware within and between the architecture’s 
layers.  We propose to re-implement 3T using these new distributed processing methods and 
tools, thus bringing the power of new methodology for distributed systems to the three-layer 
control paradigm. 
 

Background. 
 
In support of the Crew and Thermal Systems Division (CTSD) of NASA's Johnson Space Center 
(JSC), we have successfully developed autonomous, intelligent control systems for ALS 
applications since 1995 (Bonasso, 2001; Lai-fook and Ambrose, 1997; Schreckenghost et al., 
1998b).   In these projects we have used the three-layer approach to organizing and developing 
the control software.  
 
Three-layer Approach 



The three-layer architecture, developed by the artificial intelligence (AI) community in several 
forms since the late eighties (a useful historical summary can be found in (Gat, 1998)), separates 
the general intelligent control problem into three interacting pieces (see Figure 2): 

•  A reactive bottom layer consisting of a set of hardware specific modules, for 
example, switchers, PID controllers, or data analyzers, which are tightly bound to the 
specific hardware and must interact with the world in real-time.  
•  A sequencing middle layer which can differentially activate the reactive modules 
in order to direct changes in the state of the world and accomplish specific tasks, for 
example, moving a reverse osmosis system through its phases of operation.  
•  A planning/scheduling top layer, which reasons in depth about goals, resources 
and the future effects of current actions. 

 
The key aspect of the three-layer approach is that it gives developers the ability to integrate the 
continuous, near-real time control algorithms in the bottom layer with advanced AI algorithms in 
the top layer  i.e., automated planners and schedulers  which are event driven but more 
computationally expensive.  The architecture achieves this integration through the action of the 
middle layer. Essentially, the middle layer translates the goal states computed by a 
planning/scheduling system into a sequence of continuous activities carried out by the lowest 
layer, and interprets sensor information from the bottom layer as events of interest to the top 
layer. 
 
The layers allow the development and control of multiple life support equipment suites in a 
modular fashion in two ways.  First, each layer from top to bottom can have its own data 
structures, timing constraints and development tools that allow for parallel development of the 
software.  Secondly, across ALS hardware suites, the architecture allows the independent 
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Figure 2. Three-layer Intelligent Control Architecture 



development and testing of groups of ALS subsystems and a subsequent incremental integration 
of these subsystems.   
 

3T 
 
Since 1995, we have proven that our particular implementation, known as 3T (Bonasso et al., 
1997), of the three-layer approach is a powerful organizing and development principle for the 
intelligent control of a contained group of life support  subsystems.  During a 15-day Human 
Rated Test (HRT), in 1995, we used 3T to monitor and "flight-follow" the control of the 
environment of a wheat crop chamber providing oxygen to a single crewmember.  In 1997, in 
support of a 91-day four person HRT, we developed the software to provide 24/7 control of the 
transfer of product gases among an air revitalization system (ARS), a plant chamber, and a solid 
waste incineration system (Schreckenghost et al., 1998a) In 1999, we used the architecture to 
incrementally provide controls to an evolving group of water recovery subsystems, culminating in 
2001 in a yearlong integrated test of a biological water processor, an inorganic removal system, a 
brine processing system and a post-processing system.  During this test, for over 97% of the time, 
the control architecture operated 24/7, unattended. 
 
Figure 3 shows the 3T  model of the three-layer approach used in ALS projects to date. Our 
planning system develops a long-range plan for the ALS operation.  Over time, it places tasks on 
the agenda of the sequencer for execution and monitors the results.  The sequencer’s plan 
interpreter decomposes the task into an ordered list of primitives that can be executed by the 
bottom layer, which is called the skills layer.  A “skill” is a robust piece of code for carrying out 
action or for interpreting sensor information as events.  In 3T we also make use of a device skill 
(d-skill), which manages the low-level data conversion to and from the hardware.  As the action 
skills are enabled, event skills are activated to watch for sensor information signaling the 
completion (or failure) of the action.  As each primitive succeeds, the old skills are deactivated 
and new actions and events for the next primitive are activated.  When tasks complete (or fail), 
the sequencer informs the planner which will update the plan and send new tasks to the sequencer 
for execution. 
 
While the basic idea of layering control levels based on types of activities and timing constraints 
remains critical to bringing advanced algorithms to bear on ALS systems, there are key 
shortcomings in the current 3T implementation that limit its potential for next-generation 
systems.  In particular, the interfaces among the layers in 3T have shown they are limited in their 
ability to accommodate changes in hardware and software configurations, as well as to smoothly 
acquire data from more recent “open architecture” data systems such as Object Linking and 
Embedding (OLE) for Process Control (OPC) (OPC, 2002).  The following section discusses the 
limitations of the 3T implementation in detail. 



Shortcomings of the Current 3T Implementation 
 
Figure 4, used in the following discussion, notionally depicts the 3T implementation of the three-
layer architecture.  The top two layers are each depicted by a single box and the bottom layer 
consists of small boxes representing software controlling the sensors and actuators common to a 
particular ALS subsystem, for example, the air evaporation subsystem (AES) and the post 
processor (PPS) in a water recovery system.  Small horizontal bars within a layer represent the 
Application Programming Interface (API) from one layer to another.  These APIs can be 
standardized for each layer-to-layer interaction, with the exception of the lowest-level interfaces 
to the hardware that consist of ad hoc driver software particular to the hardware being controlled.  
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Figure 3.  The 3T Realization of the Three-Layer Control Architecture 



The current implementation of 3T attempts to capture the standardization of the API between 
layers using static “message” definitions in a publish-subscribe message passing system known as 
IPC (Simmons and Dale, 1997)(NDDS is a similar type of middleware; see (RTI, 2002)).  To 
build an interface, messages sent from one layer to another must first be defined for software on 
both the sending and receiving sides of the interaction.  A central server receives and distributes 
these messages.  Then code must be written to construct the messages and/or process the 
messages (message handlers) in any software that will send or receive them. 
 
The boxes to the far right represent new control software that might be added to the overall 
architecture for testing purposes, for instance, a new scheduler (top tier), a new control algorithm 
(bottom tier) or new hardware.  In the middle tier we might be interested in not only using a 
replacement sequencer, but also incorporating a new module entirely, such as a fault diagnosis 
subsystem that adds capability to the overall system.  
 
There are two major limiting factors to using any publish-subscribe middleware in distributed 
software architectures.  The first is the fact that a single server accepts and distributes the 
messages embodied in the interfaces, and thus can be a single point of failure in the system.  The 
second factor is that the publish-subscribe approach has severe limitations with regard to easily 
adding or changing components in the architecture.  The number of different interfaces, shown in 
the figure by the shaded horizontal strips, hints at this limitation. In effect, there is nothing 
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Figure 4.  The various interfaces in the 3T control system. Note that the IPC-DCOM connection is 
notional since there is to date no implementation of such a bridge. 



canonical about the interfaces, i.e., each horizontal strip represents a set of ad hoc message 
formats and their code handlers.  There is no true standardization of the API between layers in 
this implementation other than the message formats themselves.  The only reason that the 
shadings match at each level is because the programmers take care to remember (often using a 
text specification) which messages go with which level. So while it is relatively straightforward 
to add or modify a single message or handler, replacing old hardware with new or switching to a 
new software module at any level requires much effort not only to build but also to maintain the 
resulting system because message construction and processing must be coded and checked for 
consistency by hand. 
 
The next two sections detail the types of changes that ALS systems will be required to 
accommodate in the near future, describe the difficulty with realizing those changes in the 3T 
implementation and discuss what types of changes are needed to create a better solution for the 
implementation of the three-layer architecture. 
 
Hardware Changes. 
 
Changes in hardware are the norm in long running, ALS environments. During deployed 
operations or in a ground test environment, often a sensor or actuator will fail and need to be 
replaced or an obsolete device will need to be replaced with a more modern version.  
 
Affected software. 
 
In our 3T implementation of the three-layer control architecture, the drivers for each device are 
compiled directly into the low-level code for that device’s subsystem (e.g. the subsystem boxes in 
the bottom layer in Figure 4).  So when one device must be replaced for that subsystem (even if 
the replacement device is identical as it would likely be for a repair to a deployed system), the 
software for the entire subsystem must be halted.  This means the entire subsystem must be taken 
offline for the duration of the replacement procedure.  Further, if the device is not identical, the 
device driver need to be replaced and the code for the corresponding subsystem code needs to be 
recompiled and tested with the replacement device (e.g., in ground test environments, the 
replacement device may perform the same function but in a different way such as in the case 
where a temperature was originally measured with a thermocouple and the replacement sensor is 
a digital thermometer).  In some cases, a change of device will lead to additional required changes 
in the control code beyond the drivers (e.g., an entirely new data processing algorithm may be 
needed to process the new digital thermometer readings).  This type of code change also requires 
the entire subsystem’s code to be halted, recompiled, and tested.  While this is obviously better 
than bringing the overall system down (e.g. the air evaporation subsystem as opposed to the 
overall water recovery system), we submit that when replacing devices, only the part of the 
control system affected by those devices should be disabled (at a finer resolution than the 
subsystem distinction).   
 
Furthermore, even for small changes in device operating characteristics (in the bottom layer), the 
data the middle layer “sees” will sometimes be different for the new device.  In the 3T 
implementation, this requires manually intensive changes to be made to IPC message formats and 
handlers between the bottom and middle tiers.  What is required to better support the hardware 
and lower level software changes described above is an interface to and from the hardware to the 
using software that has the ability to differentially select sets of devices, and that automatically 
maintains consistency across the interface.   
 



OPC Is Not Enough. 
 
Already on the horizon there is some hope for this hardware dilemma.  Manufacturers are 
beginning to produce sensors and actuators that feed data to new kinds of analog-to-digital (A/D) 
devices, which convert the data to standard formats and transmit them via Ethernet to data servers 
(e.g., (Iconics, 2002)) Microsoft's Component Object Model (COM) (Microsoft, 2002) 
specification provides the necessary software infrastructure that defines how applications share 
data under Microsoft operating systems such as Windows NT.  The OPC specification defines a 
set of standard COM objects, methods, and properties that specifically address requirements for 
real-time factory automation and process control applications.  OPC servers provide a standard 
interface to the OPC COM objects associated with the A/D modules, allowing OPC client 
applications to exchange data and control commands in a generic way.  ALS laboratories at Ames 
Research Center and Johnson Space Center are beginning to experiment with OPC for data 
acquisition and management. 
 
Sensors that take advantage of the OPC approach will always provide their data in a standard 
format to the rest of the control system, regardless of their operating characteristics.  So in the 
case where a digital thermometer replaces a thermocouple, a temperature in degrees C is served 
by OPC from either sensor.  Further, while the sensor is being changed out, only one channel 
from the server is affected, rather than all the channels, as is the case with hand written code at 
the bottom level of 3T. 
 
However, while OPC can solve some of the problems associated with changing out hardware, it is 
not a complete solution.  OPC is particular to the Windows operating system, and while 3T runs 
on any operating system, there is yet no general interface to OPC from publish-subscribe 
middleware. Further, many ALS devices now in use and planned for use for the next several years 
do not adhere to the OPC standard.  So a requirement still exists to write 3T bottom layer code to 
interface non-OPC devices these devices to the rest of the control system, and the problems 
described earlier will still be present.  Finally, because OPC serves only as an interface to sensors 
and actuators, it only partially addresses problems associated with interchanging software at the 
bottom layer of the three-layer architecture, and does not address similar problems in the middle 
and top layers as discussed in the next section. 
 
Software changes. 
 
In a ground test environment, particularly ones involving large numbers of ALS subsystems (e.g., 
the Integrity initiative (Henninger, 2001)) determining the usefulness of the control software itself 
is often the objective of the test.  For example, a new algorithm claiming to yield better accuracy 
from the same water quality sensor may be tested in place of the standard algorithm running at 
the bottom layer of the architecture.   
 
As a matter of fact, in each layer of the 3T model, there can be multiple types and instances of 
control modules appropriate to that layer.  Testers may wish to experiment with a new automated 
planner, or investigate the added value of a fault diagnosis algorithm running in parallel with the 
middle layer sequencer.  In the case of an alternative planner, with the current 3T implementation, 
new static IPC data messages and new hand-coded message handlers will need to be developed 
and tested.  Programmers must manually ensure consistency for the newly introduced software to 
conform to the existing 3T messages used between the planner and the middle layer.  In the case 
of adding a fault diagnosis algorithm, new messages and handlers will need to be built for both 
the sending and receiving sides of the interaction between the top and middle layers.  Moreover, 
if the code on either side of that interaction changes, either the message formats or the handlers or 



both will need changing on the other side.  Since, as mentioned above, the only standardization in 
3T's IPC implementation is in the message formats themselves, careful development and manual 
coordination with the suppliers of the new software will be required, with an inevitably long 
testing and debugging phase. What is required to better support these types of software changes is 
an interface approach that unifies the changes in both data and functions and that automatically 
maintains consistency across the interface. 
 
It is important to note that the three-layer approach to intelligent control was motivated by the 
need to use AI techniques for the "intelligence" in intelligent control applications.  As such, the 
top two layers tend to have AI algorithms  many written in languages such as Lisp  while the 
bottom layer is predominantly control code written in C, C++, or a specialized hardware 
programming language such as LabView (National Instruments, 2002).  The point is that 
changing messages and handler code between layers usually involves matching up two or more 
languages in order to achieve the integrated whole, thus exacerbating the interface development 
problems.  So an improved interface approach should also include cross language compatibility. 
 
Another important aspect of the control of a large suite of ALS subsystems is the need to present 
the users, be they crew or ALS engineers, with a consistent view of the state of the systems.  This 
requirement calls for a well-designed user interface (UI), which often involves graphical 
components (GUIs) executing on a variety of hardware platforms.  In the IPC implementation of 
3T we have somewhat streamlined the introduction of UIs and GUIs by developing a standard set 
of IPC messages for such interfaces. But again, if ground test or personnel running deployed 
systems wish to use different UIs or UIs designed and built by researchers at other institutions, a 
manual level of effort similar to that of adding software to the middle layer will be necessary to 
code, test and debug the required IPC formats and associated handlers for those UI software 
packages.  Again, as in the case of software changes in the layers of 3T, what is required is an 
interface approach that unifies changes in both data and functions, is compatible across 
programming languages, and executes on the majority of hardware platforms. 
 
In summary, to solve these software issues as well as the software problems arising from the 
introduction of new or different hardware, we need a more general approach to distributing the 
software in a multi-layered system such as 3T.  Such an approach should (1) not rely on a single 
server, creating a single point of failure, (2) provide between any pair of software modules a 
canonical description for both data and functions of the interface that could generate interface 
code particular to the language of either module, (3) accommodate both ad hoc and OPC based 
sensor and actuator processing, and (4) operate on any computing platform in any geographical 
location reachable by high-speed networks.  The next section describes a solution that meets all of 
these requirements. 
 

A Better Solution. 
 
As discussed above, we have proven the efficacy of a three-layered approach to intelligent 
control, as well as the usefulness of our 3T implementation to build autonomous control systems.  
However, as the previous sections showed, the dependence of the 3T implementation on publish-
subscribe middleware and static message definitions as an approximation for a true, standardized 
Application Programming Interface (API) makes it difficult to extend the implementation to 
accommodate software and hardware changes needed in next-generation ALS applications. 
 
A more flexible approach is called for to provide a common set of interfaces (APIs) that allows 
any combination of control modules to be interchangeable. These interfaces must be easily 



specified in a standard manner and must allow a straightforward incorporation of code changes on 
either side of a given interface. We propose using the Common Object Request Broker 
Architecture (CORBA) ((OMG, 2002)) to define and implement these interfaces.  CORBA has 
been used extensively in a number of distributed processing applications, providing an open 
infrastructure for computer applications to work together over Ethernet networks.  CORBA is 
independent of both operating systems and programming languages, and tools for developing 
interoperable CORBA applications are available from many different vendors.  Recasting the 3T 
control paradigm in the CORBA framework will allow control components that implement the 
same interface to become interchangeable with a minimum of recoding, recompilation or 
hardware downtime. 
 
A further advantage of the CORBA implementation arises from the fact that CORBA can 
interoperate with the Distributed Component Object Model (DCOM) and OPC.  Recall that 
hardware manufacturers are beginning to address some of the interchangeability and 
reconfiguration problems associated with maintaining systems of sensors and actuators by using 
DCOM/OPC to standardize data formats and provide distributed access.  Through a 
DCOM/CORBA bridge, our proposed three-layer CORBA implementation can leverage these 
advances in sensor and actuator technology where they are available.   
 
However, a logical question to ask is, “Why not use DCOM protocols instead of CORBA for all 
the 3T interfaces?”  There are a number of reasons to choose CORBA over DCOM for 
applications with characteristics like the proposed three-layer control system (Geraghty et al., 
1999).  Our experience developing ALS systems shows that a flexible ALS control architecture 
must accommodate a variety of computing platforms with different operating systems including 
Unix, Linux, and Windows.  CORBA supports all of the relevant computing platforms equally, 
but DCOM’s support is heavily oriented to Windows platforms (DCOM support for some 
versions of Linux and Unix is currently available for some versions of C and C++, e.g., (Software 
AG, 2002; TechnoSoftware, 2002)).  In addition, many of the AI algorithms required for 
intelligent control in the upper layers of the proposed three-layered implementation will use Lisp 
as the programming language.  Although CORBA supports Lisp implementation, DCOM does 
not.  In general, CORBA exhibits greater cross-language support than DCOM (i.e. a middle layer 
component in Lisp and a bottom level component in C).  CORBA therefore supports 
interoperability across all three layers, whereas DCOM’s OPC support is best suited and indeed 
was specifically developed for connecting the software to the hardware at the bottom layer only.   
 
In addition to supporting multiple languages and operating systems, there are other reasons to 
prefer CORBA to DCOM.  CORBA supports more powerful distributed exception-handling 
implementations and provides powerful services for finding distributed objects.  CORBA is also 
easier to access because an application interacts with CORBA through native code generated by 
CORBA in that application’s programming language, whereas an application must interact with 
DCOM by accessing binary executables or Dynamic Link Libraries (DLLs), using various pre-
defined binary offsets to call different functions.  DCOM often requires designers to use direct 
knowledge of the interface to binary COM services and interact directly with the Windows 
Registry (Raj, 1998).  Finally, as we will show in the next section, CORBA provides a standard 
solution to the question of integrating into the control system sensors and actuators that do not 
conform to the OPC specifications.    
 
The investigators for this proposal have first hand experience in developing distributed CORBA 
applications from the ground up.  One such application involved supporting a human watch team 
for an integrated water processing facility at NASA-JSC (Schreckenghost et al., 2002).  In only a 
few months time we had designed, developed and connected some twenty-six CORBA objects to 



the output of the water processing control system to watch for shutdown problems in the facility.  
These objects included a crew activity planner and task management, location and notification 
services for three human engineers, as well as user interfaces implemented as both graphics and 
notifications via paging and email.  Without CORBA, such an endeavor would have taken two or 
three times longer to implement.  Further, the complete set of object modules, written in Java and 
Lisp, could be executed simultaneously on different computers in multiple locations using both 
Windows and Linux operating systems. 
 
The following section describes our approach to reconstructing the 3T model of the three-layer 
control architecture in the CORBA framework and details how the re-implemented architecture 
can support the hardware and software reconfigurations required by next-generation ALS 
systems. 
 

 
Design of 3T Interfaces Using CORBA. 

 
This section describes our approach to re-implementing the 3T interfaces using CORBA.  We 
will describe the planned CORBA implementation at each level of 3T as well as how the 
interfaces will allow the integration of new or alternative code modules at that level.  Prior to this 
description a short discussion of the Object Management Group’s (OMG, the authors of the 
CORBA specifications) Interface Definition Language (IDL) and its associated processing is in 
order.  OMG IDL is used to define APIs to be used by CORBA-enabled processes. 
 

How CORBA Works. 
 
The IDL is best described using an example. Figure 5 shows a simple IDL definition that declares 
the interface between the top-layer planner and any sequencer at the middle layer of the 
architecture.  Although IDL syntax is similar to C++, an IDL file can be compiled by a CORBA 
tool called an “IDL compiler” into various programming languages, e.g. C, C++, Java, Lisp, 
Smalltalk, ADA, Python, COBOL, etc.  
 
In the Planner module, shown in Figure 5, there is one interface that defines an object class called 
ForAllSequencers.  The interface defines a method, called reportNewEvent, which can be 
invoked on an instance of that class.  We can see that the method has four arguments: the name of 

module Planner { 
   
interface ForAllSequencers { 
     
    // A method used by any sequencer to report a new event to       
    // the 3T Planner. 
     
    void reportNewEvent( in string sequencer_name, 
                         in int event_id, 
                         in 3T::eventType event_type 
                         in 3T::eventStructure event ); 
 

}; 
}; 

Figure 5.  An example interface definition for a planner and any 3T sequencer 



the sequencer, the event identification number and type, and the event data itself.  Although the 
details of the data structures for the method’s arguments are not shown here, they will also be 
completely specified in the IDL.  Essentially the IDL shown in Figure 5 (the term IDL is used for 
both the interface definition language and a file written in the language) states that, to report an 
event, a sequencer must remotely invoke the reportNewEvent method with four arguments of the 
given type on an instance of the ForAllSequencers object in the planner module.   
 
As shown in this example, the IDL defines an API by specifying the names and arguments of 
methods. For all major languages, CORBA provides an IDL compiler that automatically 
generates interface code, i.e., the mechanics of sending and/or receiving. Using the OMG IDL 
language to define APIs and an associated IDL compiler to generate interface code relieves the 
programmer of the tedious burden of message format consistency-checking and message handler 
creation and maintenance.  All that remains for the programmer is to implement the “meat” of the 
function to perform the desired logical operations or carry out the desired algorithm.  In this way, 
using CORBA tools makes development and maintenance of distributed systems much easier 
than using a publish-subscribe system with static message definitions.  The following paragraphs 
describe the details of implementing a system with the IDL definition in Figure 5. 
 
A CORBA IDL compiler or “stubber” processes an IDL into two sets of language-specific 
interface code, one set used by a process sending/making a remote function call across a network 
(the client) and one set used by a process receiving the remote function call (the server).  These 
sets of generated code are then compiled or loaded into the client or server implementation.  The 
generated code in turn interacts with a CORBA backbone implementation called an Object 
Request Broker (ORB) to make appropriate socket and network calls to achieve remote method 
invocation (RMI).   
 
For example, if the planner were written in Lisp and the sequencer in C, the developer would 
execute a Lisp stubber and a C stubber on the same file to produce, respectively, code appropriate 
for loading into a Lisp image for the planner, and code to be compiled and linked into the 
sequencer C application.  The generated Lisp code provides the implementation “skeleton” 
necessary for the planner to receive distributed calls to its executable reportNewEvent method, 
but the Lisp programmer is free to implement the underlying method’s actions in any way to 
perform the associated task.   
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Figure 6.  CORBA processing of remote method invocation (RMI). 



 
On the other side of the interaction, the generated C code provides a “stub” that acts as a 
surrogate instance of the planner’s interface that receives calls from the local C code and sends 
them out to the remote planner object.  When a new event occurs, the sequencer will call the 
reportNewEvent method on its surrogate object, and the CORBA-generated C code will carry out 
the requisite processes to communicate the method name and its filled-in arguments through the 
ORB to the remote planner’s generated Lisp code.  The Lisp code will in turn call the appropriate 
method provided by the developer in the planner’s implementation (see Figure 6). 
 
The previous example described a possible API for calls from the middle layer of the three-layer 
architecture to the top layer.  Likewise, an IDL can be written for the sequencer to allow the 
planner to give the sequencer new tasks (i.e., calls from the top layer to the middle layer).   In this 
case, the planner is the “client” making the function call, and the sequencer is the “server” 
receiving the call.  Figure 7 shows such an IDL and Figure 8 depicts both the planner and the 
sequencer functioning as servers, the former for the reportNewEvent method; the latter for the 
postNewTask method. 
 
In summary, CORBA gets its power and flexibility from using language-neutral IDLs as interface 
specifications, and by the existence of ORB implementations for all major languages.  The ease 

module Sequencer { 
   
interface ForPlanner { 
     
    // A method used by any planner to post a new task        
    // to the sequencer’s agenda. 
     
    void postNewTask( in int task_id, 

   in 3T::taskStructure task); 
 

}; 
}; 

Figure 7.  An example interface definition for a sequencer and a planner in 3T 
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Figure 8.  CORBA processing of two-way remote method invocation. 



and efficiency of cross-language system integration is therefore greatly improved by using 
CORBA as opposed to using IPC as in the previous 3T implementation.  In addition, by using 
IDLs and the remote procedure invocation protocol of the ORBs, CORBA avoids the two 
common problems of the publish-subscribe approach.  First, the modules on either side of an 
interface can be either a client or a server, thus doing away with a single server and the single 
point of failure.  Moreover, the IDLs serve as a standard way to specify both data and the 
functions associated with that data used between two modules, whereas the only standardization 
in a publish-subscribe approach is in the message data, for which consistency must be maintained 
manually across communicating processes.  The implications of these differences for re-
implementing 3T are discussed in the next section.   
 

Implementing 3T in CORBA. 
 
Figure 9 shows our view of 3T with the interfaces redesigned using CORBA.  As is evident by 
the black interfaces in the figure, CORBA is used throughout the proposed implementation.  
Wherever a module cannot take direct advantage of CORBA  such as OPC servers  we will 
design CORBA wrappers so that those modules appear as CORBA objects to the rest of the 
architecture.  
 
Implementing CORBA at the Bottom Layer of 3T 
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Figure 9.   3T with interfaces redesigned using CORBA 



 
Recall that the bottom layer of 3T is called the skills layer.  Skills are tight sense-act loops written 
in C that achieve or maintain states of the hardware to which they are connected.  For each ALS 
subsystem being controlled there is a network of skills (see Figure 10) that can be differentially 
activated and deactivated by the sequencer in the middle layer.  Over the years we have found it 
efficient to design for each skill network a device skill whose sole job is to convert the digital 
signals from the hardware to the data structures needed by the rest of the skills in the network.  
The device skill will serve as the wrapper for accommodating data from both OPC servers and 
from non-OPC drivers. 
 
The CORBA implementation for the skills layer will require two steps. First, we will standardize 
the interface from the device skill to the other skills by developing (1) skill IDLs describing data 
structures and methods which the device skill can call to provide processed sensor data to the 
skills, and (2) a device skill IDL by which the skills can receive sensor data and command 
actuators through the device skill.  As Figure 9 shows, it will be at the device skill that we will 
use a CORBA-DCOM bridge to provide access to OPC-based sensors and actuators. The Object 
Management Group has published a specification for such a bridge (the OMG COM/CORBA 
Interworking Specification) and several research groups have implemented them (Geraghty et al., 
1999).  As the second step, we will augment each skill IDL to include data structures and 
methods that can be used by other skills in the network.  In this manner, the inter-skill interface 
definitions will be standardized as well as the interface to the hardware. 
 
It should be noted that for some OPC-based devices, commercial COM servers provide skill-like 
algorithms, such as “bang-bang” controllers and sensor filters.  The output of these servers will be 
passed directly to the middle layer by way of the device skill.  Some devices use OPC servers that 
do not have algorithms specific to that device, such as the domain specific positioning of a multi-
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Figure 10.  Notional 3T Skills Network with Device Skill 



way valve.  In those cases, in addition to our two-step CORBA implementation, new 3T skills 
will have to be developed, unless such skills exist from a previous development.  
 
Implementing CORBA in the Middle Layer 
 
In the middle layer of 3T, we will define IDLs for the sequencer that will specify data structures 
and methods to be used by any skill to send event data to the sequencer.  As well, an IDL for each 
skill will be defined that will allow the sequencer to activate and deactivate that skill (see Figure 
9).  Since many of the skills are invoked in a similar manner, e.g., the same skill for commanding 
a two-way valve may be required in several ALS subsystems, one IDL may serve several 
interfaces.  The existing IPC message formats and associated handlers will serve as a guide for 
the number and types of interfaces needed in the IDLs.  Therefore, instead of a large list of 
message formats and many pieces of handler code scattered among the layers, CORBA IDLs will 
organize the data and data handling in a manner not possible in the publish-subscribe framework. 
 
As alluded to in the simple examples of CORBA IDLs discussed previously, our IDLs for the 
sequencer will also include interfaces for applications at the top layer of the architecture such as 
planners and schedulers.  The sequencer not only accepts tasks for its agenda from the top layer 
of 3T, but also provides execution information from its memory in the form of answers to queries 
generated by the top layer.  Methods for these data exchanges will be included in the sequencer 
IDL. 
 
Using the approach outlined above, the ease of accommodating extant sequencer applications 
becomes clear.  Alternative sequencers need only re-organize their existing code as specified in 
the sequencer IDL in order to communicate with the top and bottom layers of the architecture, 
then generate stubs from the IDL compiler in the appropriate language and compile those stubs 
into the new sequencer module.    
 
For adding a new application in the middle layer, such as a fault diagnosis module, we assume the 
new application already has functions to accept data from a data source and to provide its 
processed information to a receiving application.   IDLs will already exist for the skills layer, so 
the new application must organize the affected data and functions according to those IDLs, stub-
out the IDLs and compile the resulting stubs into the application.  In order for the sequencer to 
receive processed information from the new module, the sequencer IDL must be augmented with 
data structures and methods to be invoked by the new app. Then new stubs must be generated and 
the resulting code compiled into the sequencer application.   
 
While the above may seem complicated, the IDLs and the automatic generation of the language 
specific stubs guide the process.  In a publish-subscribe approach, such as IPC, new message 
formats must be hand-generated on both sides of the interface and then language specific handlers 
for those formats must be written, coded and debugged.  While the logic internal to the handlers 
for IPC and the methods defined in the IDLs can both have bugs, the chance of bugs in the remote 
invocation of the functions is virtually eliminated in CORBA, whereas, the interfaces using IPC 
must be debugged by physically sending each message format on both sides of the interface. 
 
Implementing CORBA in the Top Layer of 3T. 
 
The top layer of 3T must invoke methods on the middle layer, through the sequencer IDL defined 
for the middle layer in the proposed implementation.  To date we have not seen a requirement for 
applications in the middle layer to call methods in the top layer, but we can envision future needs 
for such methods.  For instance, the fault diagnosis application mentioned in the previous section 



may be able to update a planner’s situation database.  In such a case, the IDL for the planner 
would be augmented to include methods remotely invoked by the middle layer fault diagnosis 
application.  The processing body of such methods will need to be added to the planner code, but 
such code would be required for any kind of implementation, and the resulting object-oriented 
software will be easier to modify and maintain than code resulting from ad hoc approaches. 
 
Implementing User Interfaces for 3T 
 
User interface code can exist at any level of the 3T architecture.  Currently, a standard set of IPC 
messages exists to communicate skills, sequencer and planner data to the user.  Using these 
messages and their handlers as guides, we will define IDLs for interfaces at each level of the 
architecture. 
 
Multiple Modules at Each Layer. 
 
Using CORBA, any number of control modules can be defined at each level and sets of them can 
be configured at the start of an operation. Key to this configuration is the fact that CORBA 
provides a Name Service, which serves a directory of the names and locations of CORBA objects 
running in a CORBA application.  When each object starts up, it registers its location information 
with the Name Service, thus allowing other objects to locate and use the services of that object.  
A control system startup script can define the number and types of CORBA objects to be used in 
any given ground test or deployed configuration of the control system.  Thus, only those objects 
designated to “run” will register with the Name Service.  In this manner, ground test engineers 
can easily switch out alternative control algorithms at any level.  For instance, if two sequencers 
have been developed, the start up script may designate the second one to be active, and the 
planner and the skills can lookup the designated sequencer once it registers with the Name 
Service.  Alternatively, we can make use of CORBA's Trading Object Service, which allows 
modules to find other modules based on their capabilities, rather than their names.  This 
"matchmaking" service allows each object to register a description of its capabilities, which in 
turn allows other objects to find that object based on this description (i.e., a yellow pages rather 
than a white pages). 
 
This flexibility cannot be achieved with publish-subscribe middleware.  Although, with a single 
server, there is no need to lookup other modules, such middleware does not provide any utilities 
to determine at startup which modules are available with which message formats.  For the 
publish-subscribe system, such utilities must be built in an ad hoc manner by the applications 
developers. 
 
Benefits of a CORBA-based 3T Control Architecture. 
 
As shown in Figure 9, 3T will define all of its interfaces using CORBA IDLs.   
When we complete this redesign, 3T will be a true plug-and-play control architecture, allowing 
the change out of sensors and actuators, and control and interface modules at any level of the 
architecture.  In addition, a ground test team or deployed crew will be able to specify at startup, 
which modules are to be active, and these modules will automatically find each other and 
configure themselves appropriately. 
 
The new CORBA-based 3T will be able to accommodate all the control changes discussed in 
earlier sections, in particular: 
 



1) Device failure.  With a separate interface for each device defined in the low-level IDLs, 
the using modules can determine if that device is out of commission through the 
exception handling facilities that CORBA provides, and they can avoid invoking the 
interface code for that device.  Code for operational devices will be unaffected. 

2) New device. Once a replacement has been made, if the control algorithm does not already 
exist for the device, e.g., in the existing skills or in the appropriate OPC server, new 
methods may need to be defined in the IDL for the middle layer.  Otherwise, a new 
control algorithm will be required, but with the same middle layer interface as the 
existing skills. 

3) New low level control algorithm.  Since the device skill and middle layer interfaces are 
already defined, it is only necessary to stub the IDLs in the language of the new 
algorithm, match the stubbed code to the functionality of the new algorithm, and then 
compile them together into the code for the new skill.  At startup, the new skill will be 
made active and the other skills will locate it via the Name Service.  

4) Using a different sequencer.  As in the case of a new control algorithm, since the 
interfaces for the top and bottom layers are already defined, it is only necessary to 
develop the new sequencer’s interface in accordance with the existing IDL definitions.   

5) Using a new middle layer application.  The new application must organize its affected 
data and functions according to the existing bottom-layer IDLs (sequencer/skills) and 
top-layer IDLs (sequencer/planner).  If the application needs to invoke new methods in 
any of the layers, those IDLs must be augmented with data structures and methods to be 
invoked by the new application, then stubbed, implemented, and compiled into the using 
applications.  At startup, the new application will be made active and the control code at 
the requisite layers will locate it via the Name Service. 

6) Using a different planner/scheduler.  Developers must stub out the sequencer IDL in the 
language of the new or legacy planner/scheduler, match the stubbed code to the 
functionality of the new planner/scheduler, and compile the resulting code into the 
planner/scheduler application.   

7) New user interface.  All that is required to attach a new user interface to any layer is to 
develop that user interface in accordance with the UI IDL defined for the appropriate 
layer.  At startup, the new user interface will register to receive data from the control 
software for display. 

 
In addition to the above capabilities, it will be possible to host any control software at the 
appropriate level in the architecture, and to execute that software on any combination of 
computing operating systems at any combination of locations reachable by Ethernet. 

 
Plan for Accomplishing the Work. 

 
To realize the design described in the previous section, we will take a three-phased approach, 
suggested by the three layers of the architecture, i.e., use CORBA to re-implement the skill layer, 
the sequencing layer and the planning layer.  In addition, we will develop a configuration 
methodology to demonstrate customizing the number and type of control modules used in a given 
run of the control system. 
 
The application backdrop will be the control of an integrated water recovery system (iWRS), 
previously developed and run autonomously for two years (Bonasso, 2001).  The iWRS consists 
of four subsystems: a biological water processor (BWP) for the degradation of total organic 
carbons and the removal of ammonia, a reverse osmosis (RO) system for the removal of inorganic 
salts, an air evaporation system (AES) to recover water from the brine produced in the RO, and a 



post processing system (PPS) to remove trace organics and inorganics, resulting in potable water.  
Each subsystem has its own skills layer; a single sequencer orchestrates all four skill sets.  The 
top layer consists of a scheduler used to arrange maintenance operations for the iWRS. 
 
The location of the work will be the Intelligent Systems Laboratory (ISL), the Water Research 
Laboratory (WRL) and the Environmental System Test Stand (ESTS) at JSC (see Laboratories 
for Carrying Out the Work).  
 

Phase 1: Skills Layer 
 
Implementing CORBA for the skills layer consists of three efforts: re-implementing the existing 
skills in CORBA, re-implementing the skill level user interface, and incorporating the CORBA to 
DCOM bridge for OPC-based devices. 
 
Re-implementing CORBA in 3T skills 
 
Using the existing skill sets from the iWRS, we will design IDLs for the devices skills and the 
intra-skill interfaces, generate the stubs, incorporate new CORBA methods, and test the resulting 
skills against a skill level simulation previously developed for the iWRS test.  After the basic 
implementation has been tested in the ISL, we will have an opportunity to test the connection 
between actual devices and the device skill on the PPS, which has been left intact in the WRL for 
further subsystem testing (see Laboratories for Carrying Out the Work). 
 
Re-implementing the Skills User Interface 
 
For the iWRS test we developed graphical user interfaces (GUIs) that display data broadcast by 
the device skills.  To realize this connection in CORBA, an IDL for the GUI will be defined and 
used by the device skills to post new signal data at regular intervals.  Aside from adding CORBA 
specific code to receive the data, the code for the GUIs will remain unchanged. 
 
Building the CORBA to DCOM Bridge 
 
Based on the OMG COM/CORBA Interworking Specification, a number of commercial vendors 
have developed bridging tools to support interoperability between DCOM and CORBA 
(Geraghty et al., 1999).  In this effort we will survey the set of existing CORBA to DCOM bridge 
implementations and select one among them for the basis of our bridge development.  We expect 
the majority of this effort will be spent incorporating the bridging software into our ISL 
computing and network infrastructure. After the basic implementation has been tested in the ISL, 
we will test the bridge with a suite of OPC-based hardware controlling a plant lighting stand in 
the Environmental System Test Stand (ESTS, see Laboratories for Carrying Out the Work). 
 
Phase 2: Sequencer Layer 
 
Using the existing 3T sequencer software from the iWRS, we will (1) recast the existing 
sequencer activation, deactivation, query and event functions used in the skill level as methods 
defined in the skill IDLs, and (2) define the sequencer IDL and build the methods used by the 
skills to communicate data to the sequencer.  With the sequencer written in Lisp and the skills in 
C, this effort will demonstrate the cross language remote method invocation capability of 
CORBA. 
 



Additionally, the methods used by the sequencer to display data and take commands from the 
sequencer GUI will be re-implemented as CORBA methods defined in a GUI interface to the 
sequencer IDL.  The result will be an example of separate threads in the same language process 
communicating via the CORBA specification. 
 

Phase 3: The Top Layer 
 
Currently, the iWRS maintenance scheduler runs in the same thread as the sequencer. For this 
phase of the CORBA development we will (1) extend the sequencer IDL to include an interface 
for the scheduler, (2) define a scheduler IDL with an interface for the sequencer, and (3) 
implement the methods and run the scheduler on a computer other than the one used by the 
sequencer.  The separation of scheduler and sequencer serves as a precursor to the reconfiguration 
demonstration described next. 
 
Reconfiguring the Control Architecture 
 
In order to demonstrate reconfiguring the control architecture, we will make duplicate copies of 
selected skills, the sequencer and the scheduler.  We will define a configuration script that will 
designate which of the skills, sequencers and schedulers will be used at the start up of the control 
system and demonstrate changing modules in the architecture by simply making changes to that 
script. 
 
In addition, we will run multiple GUIs for the skills on a number of different computers, 
demonstrating that all the GUIs will be updated with the same data. 
 
 

Laboratories for Carrying out the Work. 
 
We will develop and test the IDLs and associated methods and data structures in the Intelligent 
Systems Laboratory (ISL) at JSC, and we will carry out hardware testing in two JSC ALS 
laboratories. 

 
Intelligent Systems Laboratory:  The Automation, Robotics and Simulation Division (ARSD) 
of NASA JSC maintains an Intelligent Systems Laboratory (ISL), which will provide 
computational infrastructure for this project.  The ISL contains several dozen networked Unix and 
Linux workstations that are administered by a full-time support staff.  The ISL also contains 
Windows and Macintosh PCs as well as special purpose computers, such as those running real-
time operating systems for control research.  Standard software packages are maintained and 
routinely upgraded.  Software development, testing, and integration of software components will 
take place in the ISL.  
 
Water Research Laboratory (WRL).  The Crew and Thermal Systems Division (CTSD) of 
NASA JSC maintains the Water Research Laboratory, which will provide hardware to test the 
CORBA-based 3T architecture.  The PPS of the 2000-2002 iWRS test remains operational along 
with the controls rack and computers used by 3T to control the iWRS systems.  In order to 
process water in a stand-alone manner, the PPS has its on feed tank and pump.  The computers 
are linked together via LAN; a separate computer provides a gateway to other JSC laboratories, 
including the ISL. 



 
Environmental System Test Stand (ESTS).  The Environmental System Test Stand (ESTS) at 
Johnson Space Center is used as a testbed to prototype various subsystems for the plant growth 
chamber, called the BPC (Biomass Production Chamber).  The ESTS is being used for testing the 
operating characteristics of different lighting systems and for testing control system hardware and 
software components.  The control system hardware is currently comprised of National 
Instruments Fieldpoint I/O devices and Sixnet Ethertrak I/O devices connected via Ethernet.  
Each of these devices has an OPC server running on computers connected to the same Ethernet 
that reads data from the devices and has the ability to distribute it to any OPC client on the 
network.  The server for the Windows NT network is a 700 MHz Pentium III computer with 
768Mbytes of RAM, running Windows NT 4.0 Server edition.  There is also a DIN rail mounted 
PC from SBS Technologies being used on the network to forward the Fieldpoint and Sixnet data 
over the network.  It is a Pentium III 700 MHz machine with 256 Mbytes RAM running Windows 
NT 4.0 Workstation edition.  A commercial off the shelf software package called Object 
Automation from Wellspring Solutions is used for data acquisition and control.  This package has 
built-in alarming and redundant data storage capability.  It also serves as both an OPC client and 
server.  Object Automation allows for methods to be written in Java, IEC 61131-3 compliant 
Ladder Logic, or IEC 61131-3 compliant Functional Block diagrams.  All components of the 
application can be distributed across the NT network.  

 
Figure 11.  A Rack of iWRS Subsystems in the Water Research Laboratory 



 

 
Schedule 
 
An 18-month schedule for accomplishing the above plan is shown below.  The sequencer tasks 
not involving the skills layer as well as the scheduler tasks can be carried out in parallel since 
they are independent middle and top layer applications that do not require having CORBA 
implemented in the bottom layer of 3T.  We have included a report task to document the 
experience of using CORBA for 3T and comparing its operation with that of the IPC-based 
version used for the iWRS test. 
 

 
Figure 12.  Environmental System Test Stand 



 
Costs 
 
We estimate the total labor costs for the above schedule to be 27 staff months or $360000, using 
the contractor labor rates for TRACLabs personnel. 
 
Additionally, we will need $12,300 for hardware and software purchases, including: 

• Orbix 3, including Iona’s DCOM/CORBA “COMet” bridging tools, ($7300), 
• Windows 2000 software development environment for C++ and Java ($500),  
• and a Windows/Linux laptop to be used in the ESTS for testing the DCOM-CORBA 

bridge ($4500). 
 
The remainder of the software required for this project (i.e., the Lisp, Java, and C++ 
programming languages and development environments for Unix/Linux, 3T development tools, 
OPC development environments and servers, ILU ORB for CORBA/Lisp development, JacORB 
for CORBA/Java development, and TAO for CORBA/C++ development) already exists in the 
ISL and ESTS facilities. 

Skills layer
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 - skill methods
 - GUI

Top layer scheduler

Reconfiguration
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Test DCOM in PCDL

Test 3T in WRL

Write Report



Personnel 
 
Investigators at JSC and at the TRACLabs division of Metrica, Inc., both located in Houston, TX, will 
carry out the scheduled work for this project. As principle investigator, Pete Bonasso will manage the 
project execution as well as carry out the implementation of CORBA for the top two layers of the 
architecture. Mr. Bonasso is a principal designer of the 3T intelligent control architecture, and since 
1995, has investigated the application of 3T to advanced life support systems, where the key requirement 
has been the minimization of human vigilance. He has applied 3T to the monitoring and control of plant 
nutrient delivery systems and an advanced air revitalization system (ARS), and he developed the system 
planner for managing crew/plant gas exchange during a ninety-one day ALS human test.  Since 1998, he 
has been the designer and developer of the 3T control system supporting the two-year iWRS test. Mr. 
Bonasso is a co-founder of the Annual AAAI Robot Competition and Exhibition (Dean & Bonasso 93, 
Bonasso & Dean 97). He has served on the program committees for the National AI Conference and the 
annual Agent Theory, Architectures, and Languages conference. He is also an editor of Artificial 
Intelligence and Mobile Robots, with David Kortenkamp and Robin Murphy, published by the MIT 
Press in 1998. 
 
Dr. Cheryl Martin will lead the overall design for integrating CORBA into 3T, in particular, the 
development of the IDLs for each level of the architecture.  She will also design and guide the 
development of the CORBA to DCOM bridge for this application.  Over the past four years, Dr. Martin 
has acted as a principal designer for two other complex distributed systems based on CORBA: the 
Sensible Agent Testbed at The University of Texas (Barber and Martin, 2001; Barber et al., 2000) and 
the Distributed Crew Interaction project at JSC/TRACLabs ((Schreckenghost et al., 2002)).  In 
conjunction with these projects, Dr. Martin has published several research papers discussing design and 
required infrastructure for distributed systems supporting AI technologies (Barber et al., 2001; Barber et 
al., 2000).  She has expertise in code development on both Linux and Windows platforms in a variety of 
programming languages including Java and C++.  Dr. Martin also has an electrical engineering 
background that includes design and development for several real-time control and data-acquisition 
systems at NASA LaRC for both wind-tunnel instrumentation and robotics applications. 
 
Dr. David Kortenkamp has worked at TRACLabs in support of JSC intelligent robotics programs since 
1994.  A co-designer of the 3T intelligent control architecture, he will lead the design and development 
of the CORBA related code changes to the skill managers.  Dr. Kortenkamp has worked on a number of 
ALS control applications, including the 15-day early human test, the Node 3 advanced ALS technology 
demonstration, the 450-day biological water processing test, and the iWRS test. Dr. Kortenkamp was 
chair of the 1999 IJCAI Workshop on Adjustable Autonomy Systems, and served on the program 
committee for the National Conference on Artificial Intelligence and as a guest editor of a special issue 
of the Journal of Experimental and Theoretical Artificial Intelligence devoted to intelligent control 
architectures. He is also an editor of Artificial Intelligence and Mobile Robots, with Pete Bonasso and 
Robin Murphy, published by the MIT Press in 1998. 
 
Metrica/SKE personnel at JSC will perform software implementation and integration. 
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